

CDF Search for Resonance Production of Top anti-Top Pairs

$$p\bar{p} o X^o o t\bar{t}$$

Jaco Konigsberg, Valentin Necula, <u>Roberto Rossin</u> University of Florida

Introduction

- Top is the youngest among the quark family
 - o Top Turned Ten...
- Migh mass near EWSB scale
 - o Gives insight about Higgs
- Tevatron provides a unique opportunity to learn a lot about this "exotic" particle now
- Studying tt production in detail is particularly interesting
 - Of course, tt production tests QCD
 - o New physics can make an appearance here
 - · Cross section measurements are sensitive to new physics
 - Important to also test directly the mechanism of tt production
 - Hopefully top will misbehave in its teenage years!

Goal here:

Test ttbar production for possible new sources such as a narrow resonance

Looking for resonance production

Excitement in the air

© CDF results from last September

o cdf public note 7971

CDF Run 2 preliminary, L=319pb⁻¹

Outline for this talk

WHY —

Motivation for resonances

Quick Top & CDF reminders

Analysis methodology

Results from 680 pb-1

Some theoretical motivation

PHYSICAL REVIEW D

VOLUME 49, NUMBER 9

1 MAY 1994

Top quark production: Sensitivity to new physics

Christopher T. Hill* and Stephen J. Parke[†]
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois, 60510
(Received 23 December 1993)

The production cross section and distributions of the top quark are sensitive to new physics; e.g., the $t\bar{t}$ system can be a probe of new resonances or gauge bosons that are strongly coupled to the top quark, in analogy with Drell-Yan production. The existence of such new physics is expected in dynamical electroweak symmetry-breaking schemes, and associated with the large mass of the top quark. The total top quark production cross section can be more than doubled, and distributions significantly distorted with a chosen scale of new physics of ~ 1 TeV in the vector color singlet or octet s channel. New resonance physics is most readily discernible in the high- p_T distributions of the single top quark and of the W boson, and the mass distribution of the $t\bar{t}$ pair.

PACS number(s): 14.65.Ha, 12.60.—i, 13.85.Ni

Strong Dynamics (circa 1994)

Top-Z' or color singlet vector t-meson/gauge field

$$g_3(\overline{z}_1\overline{\psi}\gamma_\mu\psi+\overline{z}_2\overline{t}\gamma_\mu t)B^\mu$$

Topgluon or color octet vector t-meson/gauge field

$$g_3 \left[z_1 \overline{\psi} \gamma_\mu \frac{\lambda^A}{2} \psi + z_2 \overline{t} \gamma_\mu \frac{\lambda^A}{2} t \right] B^{A,\mu}$$

Universal Extra-dimensions (circa last friday)

Standard model in 5+1 dimensions (Burdman, Dobrescu, Ponton, hep-ph/0601186)

Kaluza-Klein mode of the gluon has cascade decays to gluons polarized along the extra dimensions $G_H^{(1,1)}$.

 $G_H^{(1,1)}$ (spin-0, color octet) couples to quarks proportional to their mass.

Kaluza-Klein mode of the photon, $B_{\mu}^{(1,1)}$, has ${\sf Br}(tar t) pprox 25\%$

Ultimately we are also guided by our own curiosity as experimentalists

Where?

Where?

Data presented here:

319 pb⁻¹ until august 2004 public results september 2005

682 pb⁻¹ until september 2005

public results 4 months later!

~ 1 fb⁻¹ by Summer 2006

- We are getting faster calib, processing, analysis, approval etc.
- Accelerator guys doing an incredible job doubled the data in one year!

SM tt production

Production via strong interaction:

√s [TeV]	σ [pb]	qq %	gg %	Rate
1.96	6.7+0.7 -0.9	85	15	~1/hr
14	800±100	10	90	~1/2 s

Theoretical predictions at ~10% uncertainty.

Uncertainties due to renormalization/factorization scale, parton distribution functions and how to deal with higher order corrections

Physic processes yields at the Tevatron

Final states from tt

Final state determined by the W decays

Lepton+jets channel

We present results on the lepton+jets channel

- > Dilepton: yield is ~5 times smaller (small number of events)
- > All hadronic: large QCD backgrounds

ttbar decay channel	Branching Ratio	Features
Dilepton	5%	High Purity Low yield
Lepton+Jets	30%	Good Purity Good yield
All Hadronic	44%	Lower Purity Better yield

Lepton + Jets overall best choice for Mttbar reconstruction.

tt event reconstruction in the lepton+jets channel

To reconstruct [accurately] any kinematical variable for the tt system we need:

- All final state particle momenta
- All measured as precisely as possible

In the I+jets final state:

- Neutrino's longitudinal momentum not known
- o Its transversal momentum reconstructed indirectly
- Jet energy is measured with limited precision (~20%)
- Don't know which jet goes with which parton
- o Further complicated by extra jets/energy from initial and final state radiation

lepton+jets event reconstruction using kinematics

"standard" technique, since top "evidence era", to measure the Top mass

- o Use lepton + 4 jets and measure:
 - lepton, MET, jet1, jet2, jet3, jet4, X
 - correct jets to parton level
- o Constrained kinematically: 2C-fit
- tags are associated to b-quarks
- several combinatorical solutions:
- 24 if no b's, 12 if 1 b-tag, 4 if 2 tags
- both solutions for the \underline{n} eutrino P_z are considered
- solution with best χ^2 selects the most likely kinematical configuration

$$egin{array}{lll} \chi^2 & = & \sum_{\ell,jets} rac{\left(\hat{P}_T - P_T
ight)^2}{\sigma_{P_T}^2} + \sum_{i=x,y} rac{\left(\hat{U}_i' - U_i'
ight)^2}{\sigma_{U_i'}^2} + rac{\left(M_{\ell
u} - M_W
ight)^2}{\sigma_{M_W}^2} \ & + rac{\left(M_{jj} - M_W
ight)^2}{\sigma_{M_t}^2} + rac{\left(M_{\ell
u j} - M_t
ight)^2}{\sigma_{M_t}^2} + rac{\left(M_{jjj} - M_t
ight)^2}{\sigma_{M_t}^2}. \end{array}$$

Assuming Mtop can also be used to reconstruct Mtt

particles	unknowns
t's	7
X	2
W's	6
b's	0
q's	0
lep	0
ν	3
TOT	18
	$\vec{P}_T(t\bar{t} + X) = 0$

\vec{P}_T	$\overline{(t\overline{t} + X)} = 0$
M	$d_{V}=M_{W}$
M_{\cdot}	$_{j_1,j_2}=M_W$
M_{i}	$_{t_1} = M_{t_2}$

D0 Run I Results on Mtt

Phys. Rev. Lett. 92, 221804 (2004)

Luminosity =
$$130 \text{ pb}^{-1}$$

N = 41 events

CDF Run I Results on Mtt

Phys. Rev. Lett. 85, 2062 (2000)

Luminosity = 109 pb^{-1} N = 63 events

Another way: Mtt via Matrix Element

- Use dynamical information to find the probability for any parton level final state, given the observables (leptons, jets, met)
 - o Exploits maximal information in the event

$$dP(p) \propto PDF \cdot d\sigma \cdot TF$$

- Incoming Parton Distribution Functions.
- Transfer Functions: probabilistic relation between measured jet energy and parton momentum
- p: parton level final state.
 - o from which we can build the probability for any kinematical variable, e.g. Mtt

Matrix Element for Mtt

- What we want:
 - o Posterior probability of the parton distribution:

$$\pi^{post}(p_b, p_{\bar{b}}, p_q, p_{\bar{q}}, \vec{p_{\nu}} | \vec{j_1}, \vec{j_2}, \vec{j_3}, \vec{j_4}, \vec{p_l})$$

$$\pi^{post}(\{p\}|\{j\}) \propto \pi^{prior}(\{p\}) \cdot T(\{j\}|\{p\})$$

The posterior Mtt probability density is:

$$\rho^{post}(x|\{j\}) = \int \{dp\} \pi^{post}(\{p\}|\{j\}) \cdot \delta(x - M_{t\bar{t}}(\{p\}))$$

- o We sum over all combinations
- © We define the reconstructed Mtt per event as the average of the distribution $\rho^{post}(\mathbf{X} \mid \mathbf{j})$

$$\mathcal{M}_{t\bar{t}} = <\rho^{post}(x|\{j\})>$$

This implementation

do calculation

- o We use the 2 --> 6 <u>exact</u> tree level ME for all relevant diagrams:
 - q-qbar and all three gg diagrams for SM ttbar
- o Spin-correlations are included
- We compute complex amplitudes directly using explicit Dirac matrices and spinors

$$\mathcal{M}_{q\bar{q}} \sim \frac{p_{\bar{q}})\gamma^{\mu}u(p_{q}) \cdot \bar{u}(p_{u})\gamma^{\beta}(1-\gamma^{5})v(p_{\bar{d}}) \cdot \bar{u}(p_{l})\gamma^{\sigma}(1-\gamma^{5})v(p_{\bar{\nu}}) \cdot}{(p_{b})\gamma^{\alpha}(1-\gamma^{5})\frac{p_{t}' + m_{t}}{p_{t}^{2} - m_{t}^{2} + im_{t}\Gamma_{t}}\gamma^{\nu}\frac{p_{\bar{t}}' + m_{t}}{p_{\bar{t}}^{2} - m_{t}^{2} + im_{t}\Gamma_{t}}\gamma^{\rho}(1-\gamma^{5})v(p_{\bar{b}}) \cdot}{\frac{g_{\mu\nu}}{(p_{q} + p_{\bar{q}})^{2}} \cdot \frac{g_{\alpha\beta} - P_{\alpha}^{W^{+}}P_{\beta}^{W^{+}}/m_{W}^{2}}{P_{W^{+}}^{2} - m_{W}^{2} + im_{W}\Gamma_{W}} \cdot \frac{g_{\rho\sigma} - P_{\rho}^{W^{-}}P_{\sigma}^{W^{-}}/m_{W}^{2}}{P_{W^{-}}^{2} - m_{W}^{2} + im_{W}\Gamma_{W}}$$

Transfer Functions

o From MC simulation calculate the probability density function $TF(E_j|E_p)$

• $\xi = 1 - E_{jet} / E_{parton}$

Example of event Mtt distributions

Red line: input event resonance mass.

SM ttbar: ME-reconstructed Mtt spectrum

- Monte Carlo comparison between generated and reconstructed Mtt
 - o L+4j event selection applied
 - o correct parton-jet combination

$$\mathcal{M}_{t\bar{t}} = \langle \rho^{post}(x|\{j\}) \rangle$$

SM Mtt is reconstructed back to the parton distribution

Analysis Path

Monte Carlo Samples & Event Selection

Standard Model background Samples

- SM ttbar [Pythia]
- W+4p (W \rightarrow e, mu) [Alpgen]
- W+2b+2p (W → e, mu) [Alpgen]
- · Dibosons WW, WZ, ZZ [Pythia]
- · QCD from data

Resonant tt signal samples

- Xo {450, 500, 550, 600, 650, 700, 750, 800, 850 & 900} GeV [Pythia]
 GEANT based CDF simulation
- © Event Selection, same as CDF top cross section:
 - o 1 Lepton: Pt>20GeV, $|\eta|$ <1.0
 - o \geq 4 jets: Et>15GeV, $|\eta|$ <2.0
 - o E_miss > 20GeV
 - o remove: Z, conversions, cosmics

Standard Model Mtt templates

- A priori decided to perform a resonance search only above 400 GeV.
- The spectrum shape of the Standard Model backgrounds are very similar.

Background templates

Reconstructed Mtt from resonant production

- The resonance spectrum is made up of three distinct components:
 - o True Lepton+Jets events:
 - All partons are matched to jets
 - Not all partons are matched
 - o Events from other tt channels
 - Mostly dileptons

Resonances with different masses

Reconstructed width is independent of intrinsic resonance width [for narrow resonances <5%]

Analysis Path

The Question

- How sensitive are we to the presence of signal from a narrow resonance in the Mtt distribution?
 - o when is a bump a fluctuation and when it is not?
- Developed a "bump search" procedure able to:
 - o Establish an a priori expected sensitivity to signal
 - o Measure cross section if signal is present
 - o Set a limit if not
 - o Account for stat and syst uncertainties

Assumptions:

- o no interference between BSM and SM signals
- o look for a narrow resonance (Γ < 5% M)
 - look for a vector resonance

Search ingredients

Inputs:

- o Signal and background Mtt templates
- o Signal and backgrounds relative weights
- o Mtt reconstructed spectrum from fake/real experiment
- Test how compatible is the experiment with the hypothesis of the presence of signal (or not) in the data.
 - o Done for each resonance mass

Output:

- o For a given resonance mass return the probability distribution as a function of its cross section contribution to the experiment
- © Run many simulated experiments ("pseudoexperiments") with SM event alone and with SM with signal added see what we learn

Example: pseudoexperiment without signal (319 pb⁻¹)

Example: pseudoexperiment with 1pb signal (319 pb-1)

Validation: output vs input cross section

We get back what we put in

Shape systematics

Shape systematics: template is changed

- If templates not quite correct the posterior may change
- Sec measurement (or limit estimation) shifted

© Known systematics

- Jet energy scale
- ISR/FSR
- W-Q² scale
- Parton Distribution Functions

Evaluate the shift as a function of the cross section and include it with a smearing function to the posterior.

$$PDF_{SYS}(\sigma_{X_0}) = PDF \otimes \delta\sigma_{X_0} = \int_0^\infty G(\sigma_{X_0} - \sigma', \delta\sigma_{X_0}(\sigma_{X_0} - \sigma')) PDF(\sigma') \cdot d\sigma'$$

Apply cross section shift on posterior PDF

- Posterior obtained includes the systematics.
- New UL can be calculated

Expected sensitivity

Expected sensitivity

Analysis Path

Analysis of the CDF data

o Use high-Pt electron and muon samples

- trigger is >= 18 GeV
- 320 pb⁻¹ up until aug 2004 public result
- 680 pb⁻¹ presented here

o Offline, apply "W+jets" selection

- 1 Lepton: Pt>20GeV, $|\eta|$ <1.0
- E_miss > 20GeV
- ≥4 jets: Et>15GeV, |η|<2.0
- remove: Z, conversions, cosmics
- no-tag required (used in algorithm if available)

o Sample composition

- SM top & di-bosons from theory
- Ratio of QCD multijet to W+jets from CDF's tt cross section measurement using kinematical variables
- Balance to the observed data is W+jets + any resonance

W+4-jets sample composition

Some distributions for 682 pb-1

→ sample composition is understood well

W+4-jets sample composition

Reconstructed Mtt from 319 pb⁻¹ data

Data vs SM expectation

Bump search results on 319 pb-1

- Theoretical model: same Z' leptophobic topcolor, used in Run 1 and by DO. Width = 1.2% of resonance mass
- According to this model masses < 700 GeV are excluded.

Mtt with MPV signal for 319 pb⁻¹

Kolmogorov Smirnov tests (319 pb⁻¹)

- ⊚ KS test w/o signal \rightarrow prob=15.4%
- ⊚ KS test w/ σ_{x0} =2 pb \rightarrow prob=71.3% (MPV from posterior, M_{x0}=500GeV)
 - Testing only the shape, not the normalization
 - Events above 400GeV only

Where are the events with identified b-jets?

No statistical analysis has yet been done to this distribution will do it in later versions of the analysis

D0 Run II Results (370 pb-1)

N = 108 events Requires 1 or more b-tagged jets

Summary after 319 pb⁻¹

- Data still consistent with SM
- Intriguing peak around 500 GeV
 - o 95% CL on resonance cross section is ~2-sigma from SM
 - o KS is ~15% for SM only
 - o KS test is ~70% with 2 pb Xo "contamination"

- We recently looked at more data (680 pb⁻¹)
 - o No changes made to the analysis
 - o New data blind until validated
 - o First time it is shown outside CDF

First: new data only (362 pb-1)

Results with all data (682 pb⁻¹)

All data bump search results

<725 GeV

KS test for all data

Fake 360 pb⁻¹ experiments with \sim 7 pb SM tt and 2 pb X° with M_{X0}=500 GeV

A small source of new physics can come and go in any given experiment

Sensitivity with more Luminosity

@1fb-1:

$$\rightarrow$$
 M_{X0}=500 \rightarrow 25% σ_{tt}

$$>$$
 M_{Xo}=800 \rightarrow 4% σ_{tt}

$$\gt M_{Xo}$$
=500 \rightarrow 15% σ_{tt}

$$\rightarrow$$
 M_{Xo}=800 \rightarrow 2% σ_{tt}

Summary and Conclusions

- By definition new physics will come in slowly
- We are very exicted that we can probe with a lot of data this important possibility for a discovery
- \odot With ~6 fb⁻¹ we will populate the Mtt distribution \times 10
- If anything is hiding there we will find it!

BACKUP

The tagged events (680 pb⁻¹)

Results with all data (682 pb⁻¹)

Integral Mtt distribution above 400 GeV

Sensitivity VS bin size

Search Methodology

Template weighting

- o N_{xo} : Based on assumed cross section and MC acceptances
- o N_{tt} & N_{ww} : Based on theoretical Xsec and MC acceptances
- o $N_W & N_{QCD}$: Balance from the data $(N_{QCD}/N_W = 0.1)$

$$N_{CDF}^{TOT} = \int L \cdot dt \cdot (\sigma_{Xo} A_{Xo} + \sigma_{t\bar{t}} A_{t\bar{t}} + \sigma_{WW} A_{WW}) + N_{QCD} + N_{W}$$

Likelihood & posterior

- o N_W , N_{Xo} , N_{tt} , N_{WW} , N_{QCD} are used to combine the templates
- o Build the total probability is:

$$L(\sigma_{X_0}, \vec{v} \mid \vec{n}) = \prod e^{-\mu_i} \frac{\mu_i^{n_i}}{n_i!}$$

o We integrate over nuisance parameters ν to take care of acceptance and cross section uncertainties and we get the posterior PDF using Bayes theorem

$$p(\sigma_{X_0} \mid \vec{n}) = \int d\vec{v} \times L(\sigma_{X_0}, \vec{v} \mid \vec{n}) \times \pi^{prior}(\sigma, \vec{v})$$

Inputs to the search – details

$$N_{CDF}^{TOT} = \int L \cdot dt \cdot (\sigma_{Xo} A_{Xo} + \sigma_{t\bar{t}} A_{t\bar{t}} + \sigma_{WW} A_{WW}) + N_{QCD} + N_{W}$$

- input ott=6.7pb
 o uncertainty 12%
- input σ WW=12.4pb (+20% to account for WZ, ZZ)
 o uncertainty 10%
- o $N_{QCD}/N_W = 0.1$

	N(@319pb-1)		Err
SMtt	65.9	45%	5.0%
WW	3.8	3%	0.3%
QCD	7.3	5%	
We4p	36.9	25%	
Wmu4p	34.1	23%	

Tools validation on Top Mass

CompHep generator: flexible LO ME-based event generator, it allows to:

- Add interactions by editing the Lagrangean
- Select explicitly the diagrams to be used for event generation
- © Compute the diagrams w/o approximations
- Interface with Pythia for parton shower
- Good companion for FlaME
- We generated 2 samples to validate the FlaME reconstruction code:
 - o qq→tt→WbWb→lvbqqb
 - o qq+gg→tt→WbWb→lvbqqb
- We reconstruct Mtop probability for:
 - o parton only, matched jets, correct and all combinations
 - o parton + gaussian smearing
 - o parton + TF smearing

Matrix Element for Top Mass

For each event the observables are j:

$$\begin{split} \mathbf{P} \Big(\mathbf{j} \, | \, \mathbf{M}_{\text{top}} \Big) &= \frac{1}{\sigma(\mathbf{M}_{\text{top}})} \sum_{\rho} \int \! \mathrm{d} p_{\nu} \prod_{\mathbf{q}}^{4} \mathrm{d} \mathbf{p}_{\mathbf{q}} \iint \! \mathrm{d} \mathbf{z}_{1} \mathrm{d} \mathbf{z}_{2} \cdot \underbrace{\mathbf{PDF}(\mathbf{z}_{1}, \mathbf{z}_{2})} \cdot \underbrace{\mathbf{d} \sigma(\mathbf{p} \, | \, \mathbf{M}_{\text{top}}, \mathbf{z}_{1}, \mathbf{z}_{2})} \cdot \underbrace{\mathbf{TF}_{\rho}(\mathbf{j} \, | \, \mathbf{p})}_{\mathbf{TF}_{\rho}(\mathbf{j} \, | \, \mathbf{p})} \\ &d\sigma(\vec{p_{i}} | p_{k}, p_{l}) = \frac{|\mathcal{M}|^{2}}{4E_{k}E_{l}|v_{k} - v_{l}|} \cdot (2\pi)^{4} \delta^{4}(p_{k} + p_{l} - \sum_{i=1}^{6} p_{i}) \cdot \prod_{i=1}^{6} \frac{d^{3}\vec{p_{i}}}{(2\pi)^{3} \cdot 2E_{i}} \end{split}$$

- The formula provides the relative probability of an event (as a whole) to be produced from a pp->tt process as a function of the top mass.
 - o Output is not a single value but a probability function.
 - o Formula accounts also for the jet-parton combinations (ρ).

To combine the measurements from n events in a sample:

Multiply the probabilities

$$L(M_{top}) = P_1 P_2 \cdots P_n$$

- Most probable value is the reconstructed top mass.
- This method is based on an original idea proposed in 1988 by Kunitaka Kondo. (J.Phys. Soc. 57, 4126)
- Method has been used to measure top mass at CDF and DO.
 - o Mtop =CDF paper
 - o Mtop = DO paper

parton level checks

- Single event likelihood shapes.
 - o correct combination
 - o no detector effects
- © L tracks nicely each top mass on each event!

1000 events likelihood:

Returns exactly the input mass

Neg. Log Likelihood

parton level pseudo experiments

Build 250 pseudo experiments of 20 events each:

- © Consider all 24 permutations
 - o $M_{top} = 175.00 \pm 0.01 \, GeV$

- Calculate pulls from:
 - o RMS = expected $\Delta M = 0.18 \text{ GeV}$
 - o |∆log L|=1/2
- Pulls' Sigma = 0.98 ± 0.03

parton level with gaussian smearing

We apply 20% gaussian smearing to parton energies For same single event shown before:

High statistics test.

Reconstructed top mass on 5k events o Mtop=175 GeV

With high-stat smearing no bias added

Mtop = $175.4 \pm 0.2 \text{ GeV}$

parton level with gaussian smearing

PEs of 20 events

For 20 evts a small ~3 GeV uncertainty expected for 20% smearing!

Top Mass: Reconstructed vs True

Perfect linearity

parton level with transfer functions

- For TF VALIDATION purposes we ran a special test:
 - o Only events with jets matched to partons
 - o Only the correct combination
 - o Jet direction replaced with parton direction
- @ Pes of 20 ev:

Mean = 174.8 ± 0.2 Sigma = 2.63 ± 0.21

Mtop summary

- Method has been tested piece-by-piece
 - o matrix element
 - o transfer functions
- Top mass reconstructed w/o any bias

Expected sensitivity for optimists

Power: 1 fb^{-1}

power of the algorithm
in discriminating
Sig from Bkg as
fraction of PEs with
LL(@95%CL)≠0

Lower limit, L=1000pb⁻¹

If 1pb signal is present:

For M_{XO} =500GeV, at L=1fb⁻¹, LL(@95%CL)≠0 on 25% of the experiments For M_{XO} =600GeV, at L=1fb⁻¹, LL(@95%CL)≠0 on 90% of the experiments For M_{XO} =700GeV, at L=1fb⁻¹, LL(@95%CL)≠0 on ~100% of the experiments

Mtt spectrum from χ^2 reconstruction

Mtt mass spectrum reconstructed via χ^2 minimization.

Many thanks to Michael Kagan.